首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   732篇
  免费   69篇
  2023年   3篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   7篇
  2018年   11篇
  2017年   17篇
  2016年   16篇
  2015年   27篇
  2014年   30篇
  2013年   37篇
  2012年   49篇
  2011年   52篇
  2010年   28篇
  2009年   35篇
  2008年   64篇
  2007年   35篇
  2006年   45篇
  2005年   31篇
  2004年   38篇
  2003年   33篇
  2002年   35篇
  2001年   22篇
  2000年   12篇
  1999年   13篇
  1998年   12篇
  1997年   11篇
  1996年   5篇
  1995年   5篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   12篇
  1990年   8篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1983年   3篇
  1982年   7篇
  1979年   3篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1971年   2篇
排序方式: 共有801条查询结果,搜索用时 343 毫秒
51.
The ataxia telangiectasia mutated (ATM) gene encodes a serine/threonine protein kinase that plays a critical role in genomic surveillance and development. Here, we use a peptide library approach to define the in vitro substrate specificity of ATM kinase activity. The peptide library analysis identified an optimal sequence with a central core motif of LSQE that is preferentially phosphorylated by ATM. The contributions of the amino acids surrounding serine in the LSQE motif were assessed by utilizing specific peptide libraries or individual peptide substrates. All amino acids comprising the LSQE sequence were critical for maximum peptide substrate suitability for ATM. The DNA-dependent protein kinase (DNA-PK), a Ser/Thr kinase related to ATM and important in DNA repair, was compared with ATM in terms of peptide substrate selectivity. DNA-PK was found to be unique in its preference of neighboring amino acids to the phosphorylated serine. Peptide library analyses defined a preferred amino acid motif for ATM that permits clear distinctions between ATM and DNA-PK kinase activity. Data base searches using the library-derived ATM sequence identified previously characterized substrates of ATM, as well as novel candidate substrate targets that may function downstream in ATM-directed signaling pathways.  相似文献   
52.
Summary Proliferation of meristematic clusters of several plants in an inexpensive airlift bioreactor system, consisting of a disposable presterilized light transmittable plastic film vessel is described. The optimal shape, size, and structural function of the disposable plastic bioreactor are based on the bubble column and airlift glass bioreactors. The disposable bioreactors are designed in a conical configuration with a single inoculation and harvest port and multiple use dispensing and mixing accessories. Shearing damage and foaming problems known to exist in bioreactors due to the plant's rigid cell wall and size were greatly reduced in the disposable plastic bioreactors. The disposable bioreactors were used for propagule proliferation and growth, using meristem and bud clusters of potato, fern, banana, and gladiolus. The clusters' biomass increased five-to eightfold over a period of 26–30 d, depending on the species. The clusters were separated mechanically by a chopper made of a grid of knives. The chopped propagules were inoculated to agar medium for further growth and developed into transplantable plants. In the case of gladiolus and potato, corms and tubers developed in a sucrose-elevated storage organ induction medium, respectively, after the initial formation of small shoots. The plantlets and storage organs were transplanted to an acclimation greenhouse and continued to grow with a 95–100% survival, depending on the species. Plant development was followed for a period of 16 wk in fern and 12–14 wk in potato, banana, and gladiolus and normal shoot and leaf growth was observed. The feasibility of large-scale liquid cultures for plant micropropagation is discussed.  相似文献   
53.
The ubiquitin proteolytic pathway is a major system for selective protein degradation in eukaryotic cells. One of the first steps in the degradation of a protein via this pathway involves selective modification of epsilon-NH2 groups of internal lysine residues by ubiquitination. To date, this amino group has been the only known target for ubiquitination. Here we report that the N-terminal residue of MyoD is sufficient and necessary for promotion of conjugation and subsequent degradation of the protein. Substitution of all lysine residues in the protein did not affect significantly its conjugation and degradation either in vivo or in vitro. In cells, degradation of the lysine-less protein is inhibited by the proteasome inhibitors MG132 and lactacystin. Inhibition is accompanied by accumulation of high molecular mass ubiquitinated forms of the modified MyoD. In striking contrast, wild-type MyoD, in which all the internal Lys residues have been retained but the N-terminus has been extended by fusion of a short peptide, is stable both in vivo and in vitro. In a cell-free system, ATP and multiple ubiquitination are essential for degradation of the lysine-less protein. Specific chemical modifications have yielded similar results. Selective blocking of the alpha-NH2 group of wild-type protein renders it stable, while modification of the internal Lys residues with preservation of the free N-terminal group left the protein susceptible to degradation. Our data suggest that conjugation of MyoD occurs via a novel modification involving attachment of ubiquitin to the N-terminal residue. The polyubiquitin chain is then synthesized on an internal Lys residue of the linearly attached first ubiquitin moiety.  相似文献   
54.
Intensive studies of an advanced energy material are reported and lithium polyacrylate (LiPAA) is proven to be a surprisingly unique, multifunctional binder for high‐voltage Li‐ion batteries. The absence of effective passivation at the interface of high‐voltage cathodes in Li‐ion batteries may negatively affect their electrochemical performance, due to detrimental phenomena such as electrolyte solution oxidation and dissolution of transition metal cations. A strategy is introduced to build a stable cathode–electrolyte solution interphase for LiNi0.5Mn1.5O4 (LNMO) spinel high‐voltage cathodes during the electrode fabrication process by simply using LiPAA as the cathode binder. LiPAA is a superb binder due to unique adhesion, cohesion, and wetting properties. It forms a uniform thin passivating film on LNMO and conducting carbon particles in composite cathodes and also compensates Li‐ion loss in full Li‐ion batteries by acting as an extra Li source. It is shown that these positive roles of LiPAA lead to a significant improvement in the electrochemical performance (e.g., cycle life, cell impedance, and rate capability) of LNMO/graphite battery prototypes, compared with that obtained using traditional polyvinylidene fluoride (PVdF) binder for LNMO cathodes. In addition, replacing PVdF with LiPAA binder for LNMO cathodes offers better adhesion, lower cost, and clear environmental advantages.  相似文献   
55.
56.
Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways.  相似文献   
57.
Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313–320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out) conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384) and the β1 domain (E297) as well as an intrapeptide bond (pE315-pR317) were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding.  相似文献   
58.
Single-molecule manipulation methods provide a powerful means to study protein transitions. Here we combined single-molecule force spectroscopy and steered molecular-dynamics simulations to study the mechanical properties and unfolding behavior of the small enzyme acylphosphatase (AcP). We find that mechanical unfolding of AcP occurs at relatively low forces in an all-or-none fashion and is decelerated in the presence of a ligand, as observed in solution measurements. The prominent energy barrier for the transition is separated from the native state by a distance that is unusually long for α/β proteins. Unfolding is initiated at the C-terminal strand (βT) that lies at one edge of the β-sheet of AcP, followed by unraveling of the strand located at the other. The central strand of the sheet and the two helices in the protein unfold last. Ligand binding counteracts unfolding by stabilizing contacts between an arginine residue (Arg-23) and the catalytic loop, as well as with βT of AcP, which renders the force-bearing units of the protein resistant to force. This stabilizing effect may also account for the decelerated unfolding of ligand-bound AcP in the absence of force.  相似文献   
59.
60.
Circulating levels of inflammatory markers can predict cardiovascular disease risk. To identify genes influencing the levels of these markers, we genotyped 1,343 single-nucleotide polymorphisms (SNPs) in 1,184 African Americans from the Health, Aging and Body Composition (Health ABC) Study. Using admixture mapping, we found a significant association of interleukin 6 soluble receptor (IL-6 SR) with European ancestry on chromosome 1 (LOD 4.59), in a region that includes the gene for this receptor (IL-6R). Genotyping 19 SNPs showed that the effect is largely explained by an allele at 4% frequency in West Africans and at 35% frequency in European Americans, first described as associated with IL-6 SR in a Japanese cohort. We replicate this association (P<1.0x10-12) and also demonstrate a new association with circulating levels of a different molecule, IL-6 (P<3.4x10-5). After replication in 1,674 European Americans from Health ABC, the combined result is even more significant: P<1.0x10-12 for IL-6 SR, and P<2.0x10-9 for IL-6. These results also serve as an important proof of principle, showing that admixture mapping can not only coarsely localize but can also fine map a phenotypically important variant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号